
Катер шел по течению реки 180 км, а затем вернулся обратно, причем на обратный путь было затрачено
на 8 часов больше. Скорость течения реки равна 4 км/ч. Найди собственную скорость катера (в км/ч)

Ответы на вопрос

Ответ:14 км/час
Пошаговое объяснение:
Пусть собственная скорость катера x км/ч. Тогда скорость катера по течению x+4 , а против течения равна х-4 . Прошел расстояние 180 км, причем на обратный путь было затрачено на 8 часов больше.
V=S/t
Отрицательная скорость быть не может



Problem Analysis
We are given that a boat traveled downstream along a river for a distance of 180 km and then returned back. The total time taken for the return trip was 8 hours longer than the downstream trip. The speed of the river current is given as 4 km/h. We need to find the speed of the boat.Downstream Trip
Let's assume the speed of the boat in still water is x km/h. During the downstream trip, the boat's speed is increased by the speed of the river current, so the effective speed is (x + 4) km/h.The time taken for the downstream trip can be calculated using the formula: Time = Distance / Speed
The distance traveled during the downstream trip is 180 km, and the speed is (x + 4) km/h. Therefore, the time taken for the downstream trip is: Time_downstream = 180 / (x + 4)
Upstream Trip
During the upstream trip, the boat's speed is decreased by the speed of the river current, so the effective speed is (x - 4) km/h.The time taken for the upstream trip can be calculated using the same formula: Time = Distance / Speed
The distance traveled during the upstream trip is also 180 km, and the speed is (x - 4) km/h. Therefore, the time taken for the upstream trip is: Time_upstream = 180 / (x - 4)
Relationship between Time Downstream and Time Upstream
We are given that the time taken for the return trip (upstream) is 8 hours longer than the downstream trip. Mathematically, we can express this as: Time_upstream = Time_downstream + 8Substituting the expressions for Time_upstream and Time_downstream, we get: 180 / (x - 4) = 180 / (x + 4) + 8
Solving the Equation
To solve the equation, we can start by multiplying both sides by (x - 4)(x + 4) to eliminate the denominators: 180(x - 4) = 180(x + 4) + 8(x - 4)(x + 4)Simplifying the equation gives: 180x - 720 = 180x + 720 + 8(x^2 - 16)
Simplifying further: 180x - 720 = 180x + 720 + 8x^2 - 128
Combining like terms: 0 = 8x^2 - 128
Dividing both sides by 8: x^2 - 16 = 0
Factoring the quadratic equation: (x - 4)(x + 4) = 0
Setting each factor equal to zero gives two possible solutions: x - 4 = 0 or x + 4 = 0
Solving for x gives: x = 4 or x = -4
Since the speed of the boat cannot be negative, we can conclude that the speed of the boat in still water is 4 km/h.
Answer
The speed of the boat in still water is 4 km/h.

Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili