Вопрос задан 16.06.2023 в 08:22. Предмет Математика. Спрашивает Попов Денис.

Системы линейных неравенств с одной переменной. Решение системы линейных неравенств с одной

переменной. Урок 4 Выбери двойные неравенства, решениями которых являются только натуральные числа 1, 2, 3, 4, 5. Верных ответов: 4 О< x < 6 0< x < 7 1 < x < 6 0< < 5 О< x < 5 1 < T< 5 13x​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Маусумканова Назгуль.

Ответ:Несколько линейных неравенств, удовлетворяющих одним и тем же решениям, образуют систему.

Рассмотрим простейший пример. Системаx b 4 i x m 9 состоит из двух неравенств, которые уже решены.

Решениями первого неравенства являются все числа, которые больше 4. Решениями второго неравенства являются все числа, которые меньше 9.

Изобразим множество решений каждого неравенства на координатной прямой и запишем ответы к ним в виде числовых промежутков:

числовые промежутки от 4 до б и минус б до 9

Но дело в том, что неравенства x > 4 и x < 9 соединены знаком системы, а значит зависимы друг от друга. Им не дозволяется раскидываться решениями как им захочется. Наша задача указать решения, которые одновременно будут удовлетворять и первому неравенству и второму.

Говоря по-простому, нужно указать числа, которые больше 4, но меньше 9. Очевидно, что речь идет о числах, находящихся в промежутке от 4 до 9.

Значит решениями системы x b 4 i x m 9 являются числа от 4 до 9. Границы 4 и 9 не включаются во множество решений системы, поскольку неравенства x > 4 и x < 9 строгие. Ответ можно записать в виде числового промежутка:

x ∈ ( 4 ; 9 )

Пошаговое объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения системы линейных неравенств с одной переменной, нужно сначала решить каждое неравенство по отдельности, а затем найти их пересечение.

Для выбора двойных неравенств, решениями которых являются только натуральные числа 1, 2, 3, 4, 5, можно использовать следующие варианты:

1. 1 < x < 6 2. 0 < x < 7 3. 1 < x < 6 4. 0 < x < 5 5. 0 < x < 5 6. 1 < x < 5

Из предложенных вариантов верными ответами будут:

1. 1 < x < 6 2. 0 < x < 7 3. 1 < x < 6 4. 0 < x < 5

Эти неравенства удовлетворяют условию, что решениями являются только натуральные числа 1, 2, 3, 4, 5.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос