Вопрос задан 25.06.2018 в 09:12. Предмет Математика. Спрашивает Талова Юлия.

Отрезки AB и CD являются хордами окружности.найдите расстояние центра окружности до хорды CD, если

AB=14 ,CD=48 , а расстояние центра окружностидо хорды AB равно 24
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Романова Анастасия.

Поскольку AB и CD -хорды,то ОA=OB=OC=OD -радиусу окружности, где О-центр окружности. Пусть,ОН-высота треугольника АОВ, тогда ОН еще и медиана этого треугольника, поскольку он равнобедренный. Треугольник ОАН-прямоугольный и ОА²=АН²+ОН² ; АН=(АВ)/2=7 ; ОА²=7²+24²=625 ; ОА=25. В треугольнике CDO :пусть, точка К на СD такова,что СК=КD ; высота ОК прямоугольного треугольника будет найдена из расчета: ОК²=ОС²-СК². Но ОС=ОА (радиус окружности), а СК=48/2=24. Отсюда ОК²=25²-24²=49. ОК=7. Ответ: расстояние центра окружности до хорды CD=7

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос