
Вопрос задан 24.06.2018 в 23:12.
Предмет Математика.
Спрашивает Путяк Саша.
Определите площадь треугольника, если две его стороны равны 35 и 14 , а биссектриса угла между ними
равна 12.

Ответы на вопрос

Отвечает Вельсовский Михаил.
В треугольнике АВС ВД биссектриса и ВД = 12, АВ = 14 , ВС = 35.
1.Проведем через точку Д прямую параллельную АВ и точка Р ВС. Получаем, что треугольник ВРД равнобедренный ( ВДР = ) и ВР = ДР.
2. АВС подобен ДРС ( по двум углам) АВ / РД = 7/5 14/РД = 7/ 5 и РД=10 и
ВР = 10.
3. В ВДР найдем cos BDP по теореме косинусов, cos BDP = 0,6 ,
значит sin BDP = sin ABD = 0, 8.
4. Т. К. ВД биссектриса ,то по свойству биссектрисы: АД / ДС = 14/ 35 = 2/5 и SABD / SBDC =2/5 SABD = 2/7 SABC .
SABD = ½ AB BD sin ABD = 67,5, значит SABC = 7/2 SABD = =235.2. Ответ : 235,2.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili