
|x – 7| ≤ 2 ПЖПЖПЖПЖП


Ответы на вопрос

Ответ:
надеюсь правильно
Пошаговое объяснение:




The expression |x - 7| ≤ 2 represents an inequality involving the absolute value of the quantity (x - 7) being less than or equal to 2. To solve this inequality, we can consider two cases:
Case 1: (x - 7) ≥ 0 (when x - 7 is non-negative) In this case, the absolute value simplifies to (x - 7) itself. Therefore, the inequality becomes: x - 7 ≤ 2
To solve for x, we can add 7 to both sides: x - 7 + 7 ≤ 2 + 7 x ≤ 9
So, for this case, the solution is x ≤ 9.
Case 2: (x - 7) < 0 (when x - 7 is negative) In this case, the absolute value simplifies to -(x - 7). Therefore, the inequality becomes: -(x - 7) ≤ 2
To solve for x, we need to reverse the inequality when multiplying or dividing by a negative number. Multiplying both sides by -1, we get: x - 7 ≥ -2
Adding 7 to both sides, we have: x - 7 + 7 ≥ -2 + 7 x ≥ 5
So, for this case, the solution is x ≥ 5.
Combining the solutions from both cases, we have: x ≤ 9 or x ≥ 5
This means the values of x that satisfy the original inequality are any real numbers that are less than or equal to 9, or greater than or equal to 5.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili