
НОК(3,8,4)НОД(3,8,4)НОК(7,10,3)НОД(7,10,3)


Ответы на вопрос

3 - простое число
8 = 2³
4 = 2²
НОК (3; 8 и 4) = 2³ · 3 = 24 - наименьшее общее кратное
НОД (3; 8 и 4) = 1 - наибольший общий делитель
Числа 3, 8 и 4 взаимно простые, так как у них нет общих делителей, кроме единицы.
- - - - - - - - - - - - - -
7 и 3 - простые числа
10 = 2 · 5
НОК (7; 10 и 3) = 2 · 3 · 5 · 7 = 210 - наименьшее общее кратное
НОД (7; 10 и 3) = 1 - наибольший общий делитель
Числа 7, 10 и 3 взаимно простые, так как у них нет общих делителей, кроме единицы.



To calculate the least common multiple (LCM) and greatest common divisor (GCD) of the given numbers, we can use the following formulas:
LCM(a, b, c) = LCM(LCM(a, b), c) GCD(a, b, c) = GCD(GCD(a, b), c)
Let's calculate the values step by step:
Step 1: Calculate LCM(3, 8) and GCD(3, 8) To calculate the LCM, we find the smallest multiple that both 3 and 8 divide evenly into, which is 24. To calculate the GCD, we find the largest number that divides both 3 and 8 without leaving a remainder, which is 1. Therefore, LCM(3, 8) = 24 and GCD(3, 8) = 1.
Step 2: Calculate LCM(24, 4) and GCD(24, 4) To calculate the LCM, we find the smallest multiple that both 24 and 4 divide evenly into, which is 24. To calculate the GCD, we find the largest number that divides both 24 and 4 without leaving a remainder, which is 4. Therefore, LCM(24, 4) = 24 and GCD(24, 4) = 4.
Step 3: Calculate LCM(7, 10) and GCD(7, 10) To calculate the LCM, we find the smallest multiple that both 7 and 10 divide evenly into, which is 70. To calculate the GCD, we find the largest number that divides both 7 and 10 without leaving a remainder, which is 1. Therefore, LCM(7, 10) = 70 and GCD(7, 10) = 1.
Step 4: Calculate LCM(70, 3) and GCD(70, 3) To calculate the LCM, we find the smallest multiple that both 70 and 3 divide evenly into, which is 210. To calculate the GCD, we find the largest number that divides both 70 and 3 without leaving a remainder, which is 1. Therefore, LCM(70, 3) = 210 and GCD(70, 3) = 1.
Finally, we have: LCM(3, 8, 4) = LCM(LCM(3, 8), 4) = LCM(24, 4) = 24 GCD(3, 8, 4) = GCD(GCD(3, 8), 4) = GCD(1, 4) = 1 LCM(7, 10, 3) = LCM(LCM(7, 10), 3) = LCM(70, 3) = 210 GCD(7, 10, 3) = GCD(GCD(7, 10), 3) = GCD(1, 3) = 1
Therefore: LCM(3, 8, 4) = 24 GCD(3, 8, 4) = 1 LCM(7, 10, 3) = 210 GCD(7, 10, 3) = 1


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili