
Вопрос задан 05.05.2021 в 16:32.
Предмет Математика.
Спрашивает Беляев Егорушка.
Андрей вырезал из бумаги несколько пятиугольников и шестиугольников. Всего у вырезанных фигур 27
вершин. сколько пятиугольников вырезал Андрей? Запиши решение и ответ.

Ответы на вопрос

Отвечает Ермаков Вадим.
Ответ:
Пошаговое объяснение:
5 пятиуг.
2 шестиуг.



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Пусть $x$ - количество пятиугольников, а $y$ - количество шестиугольников. Тогда общее количество вершин можно выразить следующим образом:
$5x + 6y = 27$
Разделим обе части уравнения на $3$ для упрощения:
$\frac{5}{3} x + 2y = 9$
Так как $x$ - целое число, то $\frac{5}{3} x$ тоже должно быть целым. Это возможно только если $x$ делится на $3$. Попробуем подставить значения $x=3$ и $x=6$ и найти соответствующее значение $y$:
- при $x=3$ имеем $2y = 9 - \frac{5}{3}\cdot 3 = 7$, откуда $y = \frac{7}{2}$, что не может быть решением, так как $y$ должно быть целым числом.
- при $x=6$ имеем $2y = 9 - \frac{5}{3}\cdot 6 = -1$, откуда $y = -\frac{1}{2}$, что также не может быть решением.
Значит, нет решений в целых числах, и задача не имеет ответа. Вероятно, была допущена ошибка в условии задачи.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili