Вопрос задан 30.04.2021 в 22:08. Предмет Математика. Спрашивает Янцевич Вероника.

Решите |x+7 |= 14|x - 2|= 6|4x-8| =12|7x-35|=7|8x-16|= 24|x-4|=2x+5​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Адам Арина.

Ответ:

1) х=14-7

х=7

ответ: х=7

2) х=6+2

х=8

ответ: х=7

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

We can solve this equation by breaking it down into several cases based on the different values of x that make each absolute value equal to its respective expression.

Case 1: |x + 7| = 14 If x + 7 is positive, then we have x + 7 = 14, which gives us x = 7. If x + 7 is negative, then we have -(x + 7) = 14, which gives us x = -21. Therefore, the solutions for this case are x = -21 and x = 7.

Case 2: |x - 2| = 6 If x - 2 is positive, then we have x - 2 = 6, which gives us x = 8. If x - 2 is negative, then we have -(x - 2) = 6, which gives us x = -4. Therefore, the solutions for this case are x = -4 and x = 8.

Case 3: |4x - 8| = 6 If 4x - 8 is positive, then we have 4x - 8 = 6, which gives us x = 7/2. If 4x - 8 is negative, then we have -(4x - 8) = 6, which gives us x = -1/2. Therefore, the solutions for this case are x = -1/2 and x = 7/2.

Case 4: |7x - 35| = 12 If 7x - 35 is positive, then we have 7x - 35 = 12, which gives us x = 47/7. If 7x - 35 is negative, then we have -(7x - 35) = 12, which gives us x = 23/7. Therefore, the solutions for this case are x = 23/7 and x = 47/7.

Case 5: |8x - 16| = 7 If 8x - 16 is positive, then we have 8x - 16 = 7, which gives us x = 23/8. If 8x - 16 is negative, then we have -(8x - 16) = 7, which gives us x = 9/8. Therefore, the solutions for this case are x = 9/8 and x = 23/8.

Case 6: |x - 4| = (2x + 5)/12 If x - 4 is positive, then we have x - 4 = (2x + 5)/12, which gives us x = 64/5. If x - 4 is negative, then we have -(x - 4) = (2x + 5)/12, which gives us x = -7/5. Therefore, the solutions for this case are x = -7/5 and x = 64/5.

Therefore, the solutions to the given equation are x = -21, -4, -1/2, 7/2, 9/8, 23/7, 23/8, and 64/5.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос