
-2sin(n/9-x/9)= 2sin(n/12-x/12)=-1 2sin^2-3sinx-2=0


Ответы на вопрос





Let's take each equation separately and solve them:
Equation 1:
-2sin(n/9-x/9) = 2sin(n/12-x/12)
Divide both sides by 2:
-sin(n/9-x/9) = sin(n/12-x/12)
Using the identity sin(a-b) = sin(a)cos(b) - cos(a)sin(b), we can rewrite the equation as:
sin(n/12)cos(x/12) - cos(n/12)sin(x/12) = -sin(n/9)cos(x/9) + cos(n/9)sin(x/9)
Rearranging and simplifying:
(sin(n/12)cos(x/12) + sin(n/9)cos(x/9)) = (cos(n/12)sin(x/12) + cos(n/9)sin(x/9))
Using the identity sin(a+b) = sin(a)cos(b) + cos(a)sin(b), we can further simplify the equation as:
sin((n/12)+(n/9))cos(x/12) = sin((n/12)+(n/9))sin(x/12)
Since sin((n/12)+(n/9)) is not equal to zero, we can divide both sides by it:
cos(x/12) = sin(x/12)
This can be rewritten as:
tan(x/12) = 1
Solving for x, we get:
x = 12tan⁻¹(1) + 24kπ, where k is an integer.
Therefore, the solutions for the first equation are:
x = 12(π/4) + 24kπ or x = 12(5π/4) + 24kπ, where k is an integer.
Equation 2:
2sin^2x - 3sinx - 2 = 0
This is a quadratic equation in sinx. We can solve it using the quadratic formula:
sinx = (3 ± √17)/4
Therefore, the solutions for the second equation are:
x = sin⁻¹[(3 + √17)/4] + 2kπ or x = sin⁻¹[(3 - √17)/4] + 2kπ, where k is an integer.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili