
Три станка–автомата разной мощности должны изготовить по 800 деталей. Сначала запустили первый
станок, спустя 20 мин – второй, а еще через 35 мин –третий. Каждый из них работал без сбоев и остановок, причем в ходе работы был момент, когда каждый станок выполнил одну и ту же часть задания. На сколько минут раньше второго станка закончил работу третий, если первый справился с заданием через 1 ч 28 мин после третьего?

Ответы на вопрос

Пусть первый станок проработал t минут и изготовил xt деталей. Второй станок проработал на 20 минут меньше и изготовил у(t–20) деталей. Третий станок проработал (t–55) минут и изготовил z(t–55) деталей.
Так как по условию "в ходе работы был момент, когда каждый станок выполнил одну и ту же часть задания", то
xt=y(t–20)=z(t–55).
xt=y(t–20) ⇒ t=20y/(y–x)
xt=z(t–55) ⇒ t=55z/(z–x)
20y/(y–x)=55z/(z–x) ⇒ 20y(z–x)=55z(y–x) ⇒
4y(z–x)=11z(y–x);
4yz–4xy=11yz–11xz;
11xz=7yz+4xy;
y=11xz/(7z+4x).
800/x минут – время работы первого;
800/у минут – время работы второго;
800/z минут – время работы третьего.
По условию первый справился с заданием через 1 ч 28 мин после третьего.
Уравнение:
(800/х)–(800/z)=1 час 28 минут
800(z–x)/xz=88 ⇒
(z–x)/xz=88/800
Найти:
(800/х)–(800/у)=?
800(y–x)/xy=?
Подставим вместо y=11xz/(7z+4x)
получим
800•7(z–x)/11xz=(5600/11)•(z–x)/xz=
=(5600/11)•(88/800)=56 минут.
О т в е т. Через 56 минут после третьего закончил работу второй.



Обозначим через $x$ время работы первого станка, через $y$ — второго, через $z$ — третьего. Так как каждый из станков должен изготовить по 800 деталей, то можем записать:
Здесь единица означает выполнение всего задания.
Также мы знаем, что первый станок закончил работу через 1 ч 28 мин после третьего, то есть через $88$ минут. Тогда можем записать уравнение:
Здесь мы учли, что первый станок работал $x+20$ минут после запуска второго, а второй работал $y+35$ минут после запуска третьего.
Разрешим уравнение относительно $z$:
Упростим:
Теперь подставим известные значения и решим уравнение:
Теперь найдем $y$. Заметим, что второй станок выполнил одну треть задания за время работы третьего станка, то есть через $z-35$ минут после своего запуска. Тогда можем записать уравнение:
Подставляем выражение для $z$:


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili