
(1/(x-2))+((x-6)/(3x^2-12))=(1/(2-x))-1


Ответы на вопрос

Ответ: (7x+6)\(3x^2 - 12)
Пошаговое объяснение:




To solve the given equation, let's simplify it step by step:
(1/(x-2)) + ((x-6)/(3x^2-12)) = (1/(2-x)) - 1
First, we'll find a common denominator for the fractions on both sides of the equation. The common denominator will be (x - 2)(2 - x) since it combines the two denominators (x - 2) and (2 - x):
((2 - x) + (x - 6)(x - 2)) / [(x - 2)(2 - x)] = (1/(2-x)) - 1
Now, let's simplify further:
[(2 - x) + (x^2 - 8x + 12)] / [(x - 2)(2 - x)] = (1/(2-x)) - 1
Next, simplify the numerator:
(2 - x + x^2 - 8x + 12) / [(x - 2)(2 - x)] = (1/(2-x)) - 1
Combine like terms in the numerator:
(x^2 - 9x + 14) / [(x - 2)(2 - x)] = (1/(2-x)) - 1
Notice that the denominator (x - 2)(2 - x) is equal to -(x - 2)(x - 2), so we can simplify further:
(x^2 - 9x + 14) / (-(x - 2)(x - 2)) = (1/(2-x)) - 1
Since the denominators are equal and non-zero, we can cancel them out:
x^2 - 9x + 14 = 1 - (2 - x)
Now, simplify the right side:
x^2 - 9x + 14 = 1 - 2 + x
Combine like terms:
x^2 - 9x + 14 = -1 + x
Rearrange the equation to bring all terms to one side:
x^2 - 9x - x + 14 + 1 = 0
x^2 - 10x + 15 = 0
Now, let's factorize the quadratic equation:
(x - 5)(x - 3) = 0
Setting each factor to zero:
x - 5 = 0 or x - 3 = 0
Solving for x:
x = 5 or x = 3
Therefore, the solutions to the equation are x = 5 and x = 3.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili