
С1. 10cosx-10sinx+sin2x-cos2x=1 [ -7pi/6; pi/2]


Ответы на вопрос




To solve the equation C1: 10cos(x) - 10sin(x) + sin(2x) - cos(2x) = 1 in the interval [-7π/6, π/2], we'll first simplify the equation and then find the solutions.
Let's simplify the equation step by step:
Use the trigonometric identities:
- sin(2x) = 2sin(x)cos(x)
- cos(2x) = cos^2(x) - sin^2(x)
The equation becomes: 10cos(x) - 10sin(x) + 2sin(x)cos(x) - (cos^2(x) - sin^2(x)) = 1
Rearrange the equation and combine like terms: -cos^2(x) + 10cos(x) - sin^2(x) + 2sin(x)cos(x) - 10sin(x) = 1
Combine the terms with cos(x) and sin(x): -(cos^2(x) + sin^2(x)) + 10cos(x) + 2sin(x)cos(x) - 10sin(x) = 1
Recall that cos^2(x) + sin^2(x) = 1: -1 + 10cos(x) + 2sin(x)cos(x) - 10sin(x) = 1
Simplify further: 10cos(x) + 2sin(x)cos(x) - 10sin(x) = 2
Now, we can solve this simplified equation in the given interval [-7π/6, π/2]. Unfortunately, this equation does not have a simple algebraic solution. We'll need to use numerical methods or approximation techniques to find the solutions.
One common method is to use a numerical solver or a graphing calculator to approximate the solutions. Using such a tool, you can plot the graph of the equation and find the x-values where it intersects the line y = 1 in the given interval.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili