
2sin^2(2x-п/6)-sin(2x-п/6)-1=0


Ответы на вопрос





To solve the equation 2sin^2(2x-π/6) - sin(2x-π/6) - 1 = 0, we can use a substitution to simplify the equation. Let's substitute y = sin(2x-π/6):
2y^2 - y - 1 = 0
Now we have a quadratic equation. We can solve it by factoring or using the quadratic formula. In this case, factoring is not straightforward, so we'll use the quadratic formula:
y = (-b ± √(b^2 - 4ac)) / (2a)
For our equation, a = 2, b = -1, and c = -1. Plugging in these values:
y = (-(-1) ± √((-1)^2 - 4(2)(-1))) / (2(2)) = (1 ± √(1 + 8)) / 4 = (1 ± √9) / 4 = (1 ± 3) / 4
We have two solutions:
- y = (1 + 3) / 4 = 4 / 4 = 1
- y = (1 - 3) / 4 = -2 / 4 = -1/2
Now let's substitute back y = sin(2x-π/6) and solve for x.
For y = 1:
sin(2x-π/6) = 1
2x-π/6 = π/2 + 2πn (n is an integer)
2x = π/2 + π/6 + 2πn
x = (π/2 + π/6 + 2πn)/2
Simplifying the expression:
x = (3π/6 + π/6 + 2πn)/2 = (4π/6 + 2πn)/2 = 2π/3 + πn
For y = -1/2:
sin(2x-π/6) = -1/2
2x-π/6 = -π/6 + 2πm (m is an integer)
2x = -π/6 + π/6 + 2πm
x = ( -π/6 + π/6 + 2πm)/2
Simplifying the expression:
x = (0 + 2πm)/2 = πm
Therefore, the solutions to the equation 2sin^2(2x-π/6) - sin(2x-π/6) - 1 = 0 are:
x = 2π/3 + πn (where n is an integer) x = πm (where m is an integer)


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili