Вопрос задан 03.03.2021 в 15:11. Предмет Математика. Спрашивает Русских Даниил.

33 боготыря устраивались на работу к дятьке Черномору, а он обещал выплатить 2018 золотых монет на

всех. Дядька Черномор может разделить всех боготырей на несколько групп но в каждой группе богатыри делять монеты между собой поровну, а остаток отдают Черномору.Вопрос: Может ли Черномор вернуть себе 31 монету?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мажаева Анастасия.

Ответ:

Нет

Пошаговое объяснение:

Потому что на одного богатыря уйдёт 61монета,а 61*33=2013

Остаток 5 монет


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи мы можем воспользоваться принципом делимости.

У нас есть 33 богатыря, и каждый из них должен получить одинаковое количество монет. Если мы обозначим это количество как "х", то общее количество монет, которое они получат, будет равно 33 * х.

По условию задачи, дядька Черномор обещал выплатить 2018 золотых монет на всех богатырей. То есть, 33 * х = 2018.

Теперь мы можем попробовать разделить 2018 на 33 и проверить, получим ли мы целое число.

2018 ÷ 33 = 61 с остатком 5.

Полученный остаток равен 5, что означает, что мы не можем равномерно распределить монеты между 33 богатырями.

Поэтому дядька Черномор не может вернуть себе ровно 31 монету в данной ситуации.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос