
Вопрос задан 01.03.2021 в 12:41.
Предмет Математика.
Спрашивает Ноцька Ольга.
Решить уравнение x^2∙(x – 2)^2– 3∙(x – 1)^2–1= 0


Ответы на вопрос

Отвечает Думенко Данил.
(x²-2x)²-3(x²-2x+1)-1.
x⁴-4x³+4x²-3x²+6x-3-1=0.
x⁴-x³-3x³+3x²-2x²+2x+4x-4=0.
x³(x-1)-3x²(x-1)-2x(x-1)+4(x-1)=0.
(x-1)(x³-3x²-2x+4)=0.
(x-1)(x³-x²-2x²+2x-4x+4)=0.
(x-1)(x²(x-1)-2x(x-1)-4(x-1))=0.
(x-1)(x-1)(x²-2x-4)=0.
(x-1)²=0. x=1.
x1,2=(2±√(4+16))/2=1±√5.
x⁴-4x³+4x²-3x²+6x-3-1=0.
x⁴-x³-3x³+3x²-2x²+2x+4x-4=0.
x³(x-1)-3x²(x-1)-2x(x-1)+4(x-1)=0.
(x-1)(x³-3x²-2x+4)=0.
(x-1)(x³-x²-2x²+2x-4x+4)=0.
(x-1)(x²(x-1)-2x(x-1)-4(x-1))=0.
(x-1)(x-1)(x²-2x-4)=0.
(x-1)²=0. x=1.
x1,2=(2±√(4+16))/2=1±√5.



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Давайте решим данное квадратное уравнение. Начнем с раскрытия скобок:
x^2 * (x - 2)^2 - 3 * (x - 1)^2 - 1 = 0
Раскроем квадратные скобки:
x^2 * (x^2 - 4x + 4) - 3 * (x^2 - 2x + 1) - 1 = 0
Распределим множители в обоих частях уравнения:
x^4 - 4x^3 + 4x^2 - 3x^2 + 6x - 3 - 1 = 0
x^4 - 4x^3 + x^2 + 6x - 4 = 0
Теперь мы имеем квадратное уравнение в четвертой степени. Чтобы решить его, можно воспользоваться численными методами или графическим представлением функции для определения ее корней.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili