Вопрос задан 17.06.2018 в 11:50. Предмет Математика. Спрашивает Комарова Светлана.

Найдите трехзначное натуральное число большее 400 которое при делении на 6 и на 5 дает равные не

нулевые остатки
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Луговик Марьяна.

По условию нам необходимо подобрать все такие трехзначные числа, которые делятся на 5 и на 6 с одинаковым остатком.
Все трехзначные числа можно записать по следующему правилу.
6*5*n+k,  где n-натуральное число, k остаток от деления.
Причем k ∈[1;4]
Нижняя граница данных чисел задается условием больше 400, верхняя граница тем,что числа трехзначные.
400<6*5*n<999
400<30*n<999
400/30<n<999
13 1/3<n<33.3
Округляем согласно свойствам натуральных чисел
14≤n≤33

n∈[14;33]

Выбираем любое натуральное число из этого промежутка и домножаем на 30 и прибавляем остаток k.
k=1                                 k=2
n=19  19*30+1=571    n=14  14*30+2=422
n=23  19*30+1=691    n=25  25*30+2=752
n=32  32*30+1=961    n=29   29*30+2=872
и т.д.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос