Вопрос задан 17.02.2021 в 00:39. Предмет Математика. Спрашивает Ганч Даниил.

Даны вершины треугольника ABC: A(-2;4), B(3;1), C(10,7). Найти: 1) уравнение медианы AM; 2)

уравнение прямой, проходящей через вершину C параллельно стороне AB.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти уравнение медианы AM, где M - середина стороны BC, нам нужно найти координаты точки M, а затем составить уравнение прямой, проходящей через точки A и M.

  1. Найдем координаты точки M, середины стороны BC. Координаты вершины B: B(3,1) Координаты вершины C: C(10,7)

    Для нахождения координат точки M, можно воспользоваться формулой середины отрезка: x_m = (x_b + x_c) / 2 y_m = (y_b + y_c) / 2

    Подставим значения координат B и C: x_m = (3 + 10) / 2 = 13 / 2 = 6.5 y_m = (1 + 7) / 2 = 8 / 2 = 4

    Таким образом, координаты точки M равны M(6.5, 4).

  2. Теперь мы можем составить уравнение прямой, проходящей через точки A(-2, 4) и M(6.5, 4). Чтобы найти уравнение прямой, нужно найти ее угловой коэффициент и свободный член.

    Угловой коэффициент k находим по формуле: k = (y_m - y_a) / (x_m - x_a)

    Подставим значения координат M и A: k = (4 - 4) / (6.5 - (-2)) = 0 / 8.5 = 0

    Угловой коэффициент k равен 0, что означает, что прямая параллельна оси x.

    Свободный член b в уравнении прямой равен y_a, так как прямая проходит через точку A. b = y_a = 4

    Таким образом, уравнение прямой, проходящей через точку C и параллельной стороне AB, имеет вид: y = 4

    Ответ:

    1. Уравнение медианы AM: отсутствует (так как медиана параллельна оси x и проходит через точку M(6.5, 4)).
    2. Уравнение прямой, проходящей через вершину C параллельно стороне AB: y = 4.
0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос