Вопрос задан 13.02.2021 в 15:41. Предмет Математика. Спрашивает Казакова Елизавета.

5z^3-4z^2-1=0 Распишите подробно как представить в виде произведения.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Русакова Ангелина.

5z³ - 4z² - 1 = 5z³ - 5z² + z² - 1 = 5z²(z - 1) + (z + 1)(z - 1) = (z - 1)(5z² + z + 1) = 0

Посмотрим можно ли разложить вторую скобку:

5z² + z + 1 = 0

D = 1 - 20 = -19 < 0 - в действительных числах нельзя

но можно в комплексных (если это задание на комплексные числа)

z₁ = (-1 - i√19)/10

z₂ = (-1 + i√19)/10

5z² + z + 1 = 5(z + (1 - i√19)/10))(z + (1 + i√19)/10)

5z³ - 4z - 1 = 5(z-1)(z + (1 - i√19)/10))(z + (1 + i√19)/10)

либо 5z³ - 4z - 1 = (z-1)(5z² + z + 1) - если в действительных числах

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы представить уравнение 5z^3 - 4z^2 - 1 = 0 в виде произведения, мы можем использовать метод деления многочленов.

  1. Сначала найдем один корень уравнения. Можно использовать различные методы, такие как метод Ньютона или метод деления степенного ряда. Предположим, что мы нашли корень z = a.

  2. После нахождения корня a мы можем разделить исходное уравнение на (z - a) с использованием долгого деления многочленов.

    scss
    (5z^3 - 4z^2 - 1) / (z - a)
  3. Процесс долгого деления продолжается до тех пор, пока не останется линейный многочлен, который можно легко решить. Остаток будет равен нулю, если мы правильно нашли корень.

  4. Когда мы получим линейный многочлен вида (z - b), где b - другой корень, мы можем записать исходное уравнение в виде произведения:

    scss
    5z^3 - 4z^2 - 1 = (z - a)(z - b)(z - c),

    где c - третий корень, который мы найдем, повторяя процесс деления для полученного квадратного многочлена.

Таким образом, представление уравнения 5z^3 - 4z^2 - 1 = 0 в виде произведения будет выглядеть следующим образом:

5z^3 - 4z^2 - 1 = (z - a)(z - b)(z - c),

где a, b и c - корни уравнения.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос