Вопрос задан 12.06.2018 в 09:13. Предмет Геометрия. Спрашивает Бугаёв Сергей.

Найдите углы четырёхугольника ABCD, вписанного в окружность, если ∠ADB = 62°, ∠ACD = 54°, ∠CBD =

27°.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ардапкин Никита.

Вписанный угол равен половине дуги, на которую он опирается.
Дуга СD = 2 * ∠СBD = 2 * 27 = 54°
Дуга AD = 2 * ∠ACD = 2 * 54 = 108°
Дуга AB = 2 * ∠ADB = 2 * 62 = 124°
Дуга BC = 360 - (54 + 108 + 124) = 74°

∠АВС опирается на дугу ADC. 
Дуга АDС = дуга АD + дуга СD = 108 + 54 = 162°
∠АВС = 162/2 = 81°

∠ВСD опирается на дугу ВAD. 
Дуга ВАD = дуга АВ + дуга АD = 124 + 108 = 232°
∠ВСD = 232/2 = 116°

∠АDС опирается на дугу АВС. 
Дуга АВС = дуга АВ + дуга ВС = 124 + 74 = 198°
∠АDС = 198/2 = 99°

Сумма углов четырехугольника = 360°, отсюда:
∠DАВ = 360 - (81 + 116 + 99) = 64°


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос