
Вопрос задан 12.06.2018 в 09:13.
Предмет Геометрия.
Спрашивает Бугаёв Сергей.
Найдите углы четырёхугольника ABCD, вписанного в окружность, если ∠ADB = 62°, ∠ACD = 54°, ∠CBD =
27°.

Ответы на вопрос

Отвечает Ардапкин Никита.
Вписанный угол равен половине дуги, на которую он опирается.
Дуга СD = 2 * ∠СBD = 2 * 27 = 54°
Дуга AD = 2 * ∠ACD = 2 * 54 = 108°
Дуга AB = 2 * ∠ADB = 2 * 62 = 124°
Дуга BC = 360 - (54 + 108 + 124) = 74°
∠АВС опирается на дугу ADC.
Дуга АDС = дуга АD + дуга СD = 108 + 54 = 162°
∠АВС = 162/2 = 81°
∠ВСD опирается на дугу ВAD.
Дуга ВАD = дуга АВ + дуга АD = 124 + 108 = 232°
∠ВСD = 232/2 = 116°
∠АDС опирается на дугу АВС.
Дуга АВС = дуга АВ + дуга ВС = 124 + 74 = 198°
∠АDС = 198/2 = 99°
Сумма углов четырехугольника = 360°, отсюда:
∠DАВ = 360 - (81 + 116 + 99) = 64°



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili