Вопрос задан 03.09.2020 в 22:48. Предмет Геометрия. Спрашивает Сурикова Екатерина.

Скольки градусам равен угол, tg которого равно 4/3?

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения угла, tg которого равно 4/3, мы можем воспользоваться обратным тригонометрическим соотношением.

В данном случае, мы ищем значение угла, для которого tg(угол) = 4/3.

Тангенс угла определяется как отношение противолежащего катета к прилежащему катету в прямоугольном треугольнике.

То есть, если tg(угол) = 4/3, это означает, что противолежащий катет равен 4, а прилежащий катет равен 3.

Мы можем использовать теорему Пифагора для нахождения гипотенузы треугольника:

гипотенуза^2 = противолежащий катет^2 + прилежащий катет^2

гипотенуза^2 = 4^2 + 3^2 = 16 + 9 = 25

гипотенуза = √25 = 5

Теперь, чтобы найти угол, мы можем использовать обратную тригонометрическую функцию арктангенс (arctg).

arctg(4/3) = угол

Применяя арктангенс к отношению 4/3, мы получаем угол, который равен приблизительно 53.13 градусов.

Таким образом, угол, tg которого равно 4/3, равен примерно 53.13 градусов.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос