Вопрос задан 03.09.2020 в 13:56. Предмет Геометрия. Спрашивает Пикулев Сергей.

отрезки АВ и DC лежат на параллельных прямых, а отрезки AC .u BD пересекаются в точке М. Найти

МС,если АВ=18;DC =54;AC =48
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Дано: Отрезки AB и DC лежат на параллельных прямых. Отрезки AC и BD пересекаются в точке M. AB = 18 DC = 54 AC = 48

Решение: Для решения данной задачи, мы можем использовать подобие треугольников.

Отношение длин отрезков

Используя подобие треугольников, мы можем установить отношение между длинами отрезков AB, DC и AC.

Отношение длин отрезков на параллельных прямых равно отношению их длин: AB / DC = AC / BD

Заменяем известные значения: 18 / 54 = 48 / BD

Нахождение длины BD

Чтобы найти длину отрезка BD, решим получившееся уравнение:

18 / 54 = 48 / BD

Сначала упростим левую часть:

1 / 3 = 48 / BD

Затем переставим части уравнения:

BD / 48 = 3 / 1

BD = 48 * (3 / 1) BD = 48 * 3 BD = 144

Таким образом, длина отрезка BD равна 144.

Нахождение длины MC

Теперь, чтобы найти длину отрезка MC, мы можем использовать тот факт, что треугольники ABC и DMC подобны.

Так как треугольники ABC и DMC подобны, то отношение длин соответствующих сторон равно:

AB / DC = MC / BD

Заменяем известные значения: 18 / 54 = MC / 144

Упростим левую часть:

1 / 3 = MC / 144

Переставим части уравнения:

MC / 144 = 1 / 3

MC = 144 * (1 / 3) MC = 144 / 3 MC = 48

Таким образом, длина отрезка MC равна 48.

Ответ

Таким образом, длина отрезка MC равна 48.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос