
Вопрос задан 11.06.2018 в 04:17.
Предмет Геометрия.
Спрашивает Dolbeev Roman.
Задана окружность с центром О и с хордой CD. Радиус OE проведен перпендикулярно хорде CD. Докажите,
что хорды CE и DE равны. рисунок не нужен, напишите то что нужно написать.

Ответы на вопрос

Отвечает Жуков Дима.
Проведем радиусы OC и OD. Обозначим OE пересекает CD в Н.
Рассмотрим АОВ - р/б (ОС= ОD, т.к. радиусы окр. равны)
СD - основание, ОЕ - высота, проведенная к основанию (т.к. ОЕ перпендикулярна СD) => ОН - медиана => АН = ВН.
Рассмотрим СНЕ и DНЕ. В них:
|1) ЕН - общая
< = |2) угол СНЕ = углу DНЕ
|3) СН = НD
тр. СНЕ = тр. DНЕ по 2-ум сторонам и углу между ними => CE=AD (т.к. в равных треугол. противоположные элементы равны)
ч.т.д.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili