
Вопрос задан 10.06.2018 в 15:34.
Предмет Геометрия.
Спрашивает Рысь Даня.
Катеты прямоугольного треугольника равны 35 и 120. Найдите высоту, проведённую к гипотенузе


Ответы на вопрос

Отвечает Лебедева Ира.
По теореме Пифагора найдём гипотенузу Назовём её АВ=корень кв. из 1225+14400=15625=125. По свойству среднего пропорционального для катета запишем АСвквадрате= АВ умноженное на проекцию этого катета на гипотенузу. Обозначим эту проекцию через Х, тогда 1225=125Х Х=9,8 Теперь по теореме Пифагора находим высоту Н=корен кв. из1225-96,04=корень из 1128,96=33,6



Отвечает Иванов Федя.
Гипотенуза равна √120^2+35^2=√15625=125
высота (h) делит гипотенузу на 2 отрезка х и у.
Катет прямоугольного треугольника есть среднее пропорциональное или среднее геометрическое между гипотенузой и проекцией этого катета на гипотенузу.
120=√125*х х=120^2:125=115,2
35=√125*у у=35^2:125=9,8
высота - среднее пропорциональное проекций катетов на гипотенузу.
h=√х*у=√115,2*9,8=√1128,96=33,6


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili