Вопрос задан 22.07.2020 в 22:58. Предмет Геометрия. Спрашивает Маласов Михаил.

В правильной четырехугольной пирамиде высота 5. объем 480 Найдите боковое ребро этой пирамиды.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Коновалова Диана.
V=1/3*S*h, где V - объём пирамиды, S - площадь основания, h - высота. Зная объём и высоту, можно найти площадь основания, она равна 480/(3*5)=32. Так как основание пирамиды - квадрат, а его площадь равна 32, сторона равна √32=4√2. Диагональ квадрата в √2 раз больше его стороны, тогда диагональ равна 8. Половина диагонали равна 4. Рассмотрим теперь треугольник, образованный половиной диагонали основания, боковым ребром и высотой. Он прямоугольный, так как высота перпендикулярна диагонали основания. В нём известны длины обоих катетов, значит, по теореме Пифагора можно найти гипотенузу -  √25+16=√41, которая и будет боковым ребром.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос