
Вопрос задан 22.07.2020 в 18:46.
Предмет Геометрия.
Спрашивает Персицкая Екатерина.
Две прямые пересекаются в точке М. Докажите, что все прямые, не проходящие через точку М и
пересекающие данные прямые, лежат в одной плоскости. Лежат ли в одной плоскости все прямые, проходящие точку М?

Ответы на вопрос

Отвечает Найдёнышев Женя.
Любая прямая. пересекающаяся с данными двумя, образует на них 2 точки, и третья точка - М.
Основная аксиома стереометрии:
Через любые три точки пространства, не лежащие на одной прямой, можно провести одну и только одну плоскость. Следовательно, ответ на первый вопрос - да. лежат.
Лежат ли в одной плоскости все прямые, проходящие точку М?
Поскольку речь обо всех прямых, то ответ: Нет, не лежат. Через одну точку пространства можно провести бесконечное множество прямых ( в разных направления). Если через две из них провести плоскость, то третья прямая может быть перпендикулярна этой плоскости или пересекать ее под острым углом. Аналогично и все остальные прямые.


Топ вопросов за вчера в категории Геометрия

Геометрия 61

Геометрия 108

Геометрия 17

Геометрия 10

Геометрия 34

Геометрия 75

Геометрия 12

Геометрия 13
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili