Вопрос задан 08.06.2018 в 07:05. Предмет Геометрия. Спрашивает Ризуанов Арсен.

1. Перпендикуляр, проведенный из вершины тупого угла ромба делит его сторону пополам. Периметр

ромба равен 36 см. Найдите углы и меньшую диагональ ромба.2. Докажите, что прямоугольник является квадратом, если две его соседние стороны образуют с диагональю равные углы.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сытников Руся.

1. Все стороны ромба равны.
АВ = Р/4 = 36/4 = 9 см
В треугольнике ABD ВН - высота и медиана, значит, AB = BD. Но AB = AD, значит треугольник равносторонний.
Т.е. BD = 9 см, а ∠BAD = 60°
Сумма углов, прилежащих к одной стороне, равна 180°, значит
∠АВС = 180° - 60° = 120°
 
2. Т.к. в прямоугольнике ∠ВАС = ∠DAC, то АС - биссектриса угла А. Значит, ABCD - ромб. Но т.к. углы прямые - квадрат.


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос