Вопрос задан 06.07.2020 в 02:13. Предмет Геометрия. Спрашивает Шкоропад Таня.

Помогите пожалуйста Радиус основания равностороннего цилиндра равен 12 см; точка пересечения

диагоналей его осевого сечения является центром сферы радиуса 15 см. Найдите площадь части сферической поверхности, находящейся вне цилиндра.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сибирёва Яна.
OM=OF=12
OP=15, PE=3
OM=12, по теореме Пифагора HM=9=FO
PF=15-FO=6

S шара (площадь поверхности)= 4пR^2
S сегмента =2пRH 
где Н - высота сегмента
S сегмента с высотой РЕ = 2пR*3=90п
S сегмента с высотой PF=2пR*6=180п
S поверхности вне цилиндра = S шара + 2(S сегмента с высотой РЕ) - 2(S сегмента с высотой PF) =900п-360н+180п=720п

Ответ:720п

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос