
Вопрос задан 06.07.2020 в 02:13.
Предмет Геометрия.
Спрашивает Шкоропад Таня.
Помогите пожалуйста Радиус основания равностороннего цилиндра равен 12 см; точка пересечения
диагоналей его осевого сечения является центром сферы радиуса 15 см. Найдите площадь части сферической поверхности, находящейся вне цилиндра.

Ответы на вопрос

Отвечает Сибирёва Яна.
OM=OF=12
OP=15, PE=3
OM=12, по теореме Пифагора HM=9=FO
PF=15-FO=6
S шара (площадь поверхности)= 4пR^2
S сегмента =2пRH
где Н - высота сегмента
S сегмента с высотой РЕ = 2пR*3=90п
S сегмента с высотой PF=2пR*6=180п
S поверхности вне цилиндра = S шара + 2(S сегмента с высотой РЕ) - 2(S сегмента с высотой PF) =900п-360н+180п=720п
Ответ:720п
OP=15, PE=3
OM=12, по теореме Пифагора HM=9=FO
PF=15-FO=6
S шара (площадь поверхности)= 4пR^2
S сегмента =2пRH
где Н - высота сегмента
S сегмента с высотой РЕ = 2пR*3=90п
S сегмента с высотой PF=2пR*6=180п
S поверхности вне цилиндра = S шара + 2(S сегмента с высотой РЕ) - 2(S сегмента с высотой PF) =900п-360н+180п=720п
Ответ:720п



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili