
Вопрос задан 05.07.2020 в 09:29.
Предмет Геометрия.
Спрашивает Чесноков Константин.
Одна из двух равных окружностей проходит через центр другой окружности. Вычисли длину общей
хорды, если радиус окружности равен 6 м. Ответ: длина общей хорды равна

Ответы на вопрос

Отвечает Новиков Вадим.
Центр второй окружности лежит на первой окружности
расстояние между центрами окружностей равно r
расстояние от центра каждой до точек пересечения тоже равно r
Имеем ромб со стороной r и малой диагональю тоже равной r
Нам в итоге надо найти бОльшую диагональ
соответственно, две стороны и малая диагональ составляют
равносторонний треугольник (все углы 60, все стороны r)
половина бОльшей диагонали равна высоте этого треугольника
h = r·sin 60 = 0,5r√3
Искомая хорда=2·0,5·r = r√3 = 30√3


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili