
Вопрос задан 19.06.2020 в 22:42.
Предмет Геометрия.
Спрашивает Ветров Тёма.
В треугольнике ABC проведены биссектрисы BK и CL, пересекающиеся в точке О. Докажите,
что треугольники KOL и BOC подобны, если известно, что отрезок KL параллелен стороне BC.

Ответы на вопрос

Отвечает Garifullin Karim.
Пусть уг.В = алфа, а уг.С = бета
Тогда в тр-ке ВОС углы прилежащие к основанию ВС: уг.СВО =0,5 алфа, уг. ВСО = 0,5бета.
В тр-ке КОЛ уг. КЛО = 0,5 бета, т.к уг. КЛО и уг.ВСО являются внутренними накрест лежашими при параллельных прямых ВС и ЛК и секущей СЛ.
В тр-ке КОЛ уг. ЛКО = 0,5 алфа, т.к уг. ЛКО и уг.СВО являются внутренними накрест лежашими при параллельных прямых ВС и ЛК и секущей ВК.
Треугольники КОЛ и ВОС подобны, по 1-му признаку: Если два угла одного треугольника соответственно равны двум углам другого, то эти треугольники подобны.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili