Вопрос задан 14.05.2020 в 05:20. Предмет Геометрия. Спрашивает Чупров Руслан.

Все рёбра правильной четырехугольной пирамиды SABCD равны. Точки о и Т - середины отрезков SF i BF

соотственно, точка F - внутреняя точка отрезка DC. Вычислите длину отрезка OT, если площадь четырехуольника ABCD = 16 cm2
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сабыр Гауһар.
SO - высота, ABCD - квадрат (по определению правильной пирамиды)
AC=BD, AO=OC=¹/₂AC=¹/₂BD (свойство диагоналей квадрата)
ΔSOC: ∠SOC=90°
CS²=OC²+SO² (теорема Пифагора)
SO²=CS²-OC²=CS²-(¹/₂BD)²=17²-(16/2)²=17²-8²=(17-8)(17+8)=9·25=225
SO=15
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос