
Вопрос задан 02.06.2018 в 13:15.
Предмет Геометрия.
Спрашивает Моторина Мария.
Основание пирамиды МАВСД-ромб АВСД с диагоналями ВД=6, СА=8. Все боковые грани пирамиды образуют с
основаним угол, синус которого равен . Найдите площадь боковой поверхности пирамиды.

Ответы на вопрос

Отвечает Кирилл Васильев.
Все двугранные углы при основании равны, то высота МО пройдёт через точку О пересечения диагоналей ромба
1)По свойству диагоналей ромба тр-к АОД прямоугольный, и АО =8/2 =4 и ДО =6/2=3
Тогда по теореме Пифагора АД² =АО² +ДО² = 9+16 =25 тогда АД=5
2) Из точки О проведём перендикуляр ОК на сторону ромба АД Из тр-ка АОД
S(АОД) =0,5 3*4 =0,5 5*ОК или ОК = 12/5 =2,4
3) Проведём МК по теореме о трёх перпендикулярах МК┴АД, то есть будет высотой грани АМД и по теореме Пифагора из тр-ка МОК имеем МК² =МО² +ОК² = 1+5,76 =6,76 Тогда МК=2,6
4) Высота ромба АВСД равна Н=2ОК =2*2,4 =4,8
5) Sполн=Sбок+Sосн = 4*0,5*5*2,6 +5*4,8 =26+24 =50
Ответ 50


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili