
Вопрос задан 02.06.2018 в 11:23.
Предмет Геометрия.
Спрашивает Максимова Алена.
Квадрат вписан в круг. Найдите площадь меньшего сегмента,отсекаемого стороной квадрата,. если длина
радиуса круга равна 4см. Задача№2) Докажите,что треугольник ВСD с вершинами в точках В(5;-4), С(3;4) и D(11;2) является равнобедренным" помоги пожалуйста срочно надо на завтра

Ответы на вопрос

Отвечает Носова Катюша.
Квадрат отсекает от окружности 4 равных сегмента, их общая площадь равна пл. круга - пл. квадрата, а чтобы найти пл. одного сегмента, нужно полученную разность разделить на 4.
R=4 cлед. Sкруга = 16π
Диагональ квадрата - это диаметр окружности = 8, сторона квадрата = х
по Пифагору х² +х² =64
х²= 32
Sкв=32
Sсегм = (16π-32):4 = 4π - 8
2) Найдем координаты векторов
СВ(2; -8), СD(8; -2)
Длины векторов СВ=√2²+(-8)²=√68 CD=√8²+(-2)²=√68
BC=CD , ВСD - равнобедренный


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili