Вопрос задан 24.04.2020 в 10:32. Предмет Геометрия. Спрашивает Михайлова Анастасия.

Дан выпуклый четырехугольник abcd такой, что ad = ab + cd.Биссектриса угла a проходит через

середину стороны bc.Докажите, что биссектриса угла d также проходит через середину bc.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Золотарёва Полина.
Чтобы рисунок соответствовал условию задачи, воспользуемся для его построения окружностями с центром в точке А и радиусом АВ,
 и с центром в точке D и радиусом СD. 
Обозначим середину ВС буквой М. 
Нужно доказать, что биссектриса угла D пересекает ВС в точке М. 
По условию АD=АВ+СD, следовательно, АВ=АК, КD=СD 
Треугольник АВК равнобедренный, АЕ - биссектриса, ⇒ 
АЕ- ещё и высота,  и медиана. 
Высота треугольника перпендикулярна стороне, к которой проведена⇒  
угол ВЕА=∠АЕК=90º. 
Δ АDС равнобедренный, биссектриса DН- его высота и медиана. ⇒ 
угол СНD=∠КНD=90º. 
В треугольнике КВС  отрезки ВМ=МС по условию 
КН=НС, т.к. DН - медиана,
 ВЕ=ЕК, т.к. АЕ - медиана⇒
МН - средняя линия. и  ЕМ- средняя линия 
ЕМ=КН, МН=ЕК, ⇒
МН||ВК  и 
ЕМ||КН 
МЕК=90º как смежный с ∠AEK, поэтому 
∠ЕМН=90º как соответственный ВЕМ при  прямых MH||ВК и секущей МЕ. 
Четырехугольник ЕМНК - прямоугольник. . 
Через одну точку на прямой можно провести только один перпендикуляр. 
НМ - продолжение DН. ⇒
 
Биссектриса DМ угла  D  проходит через середину  стороны ВС, ч.т.д.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос