
Вопрос задан 01.04.2020 в 14:40.
Предмет Геометрия.
Спрашивает Чапаев Пётр.
Даны вершины треугольника A(7;-8;2) b(10;-8;-1) c(11;-4;2) найдите величину угла bac этого
треугольника

Ответы на вопрос

Отвечает Добрынина Ксения.
Угол α между вектором a и b:
cosα=(Xa*Xb+Ya*Yb+Za*Zb)/[√(Xa²+Ya²+Za²)*√(Xb²+Yb²+Zb²)].
В нашем случае вектор а - это вектор АВ, а вектор b - вектор АС. Искомый угол <BAC. Найдем координаты векторов.
Вектор АВ={10-7;-8-(-8);-1-2} = {3;0;-3}.
Вектор АС={11-7; -4-(-8);2-2} = {4;4;0}.
Тогда Cosα = (12+0+0)/[√(9+0+9)*√(16+16+0)] = 12/24 =1/2.
Ответ: <BAC = arccos(0,5) = 60°


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili