
Вопрос задан 22.03.2020 в 02:02.
Предмет Геометрия.
Спрашивает Афонченко Антоний.
Внутри угла с вершиной o,отличного от прямого,взята точа M;A и B - основания
перпендикуляров,опущенных из M на стороны угла.Докажите,что прямая,проходящая через середины OM и AB,перпендикулярна AB

Ответы на вопрос

Отвечает Дербаремдикер Даня.
Пусть C середина OM , а D середина AB. В прямоугольном треугольнике OAM (<A=90°) AC= OM/2 , как медиана , проведённая из вершины прямого угла .
Аналогично из прямоугольного ΔOBM: BC= OM/2 . Значит ΔACB
равнобедренный AC=BC =OM/2, а в равнобедренном треугольнике медиана, проведенная к основанию ,является (биссектрисой) и высотой т.е. медиана CD ⊥AВ .
Аналогично из прямоугольного ΔOBM: BC= OM/2 . Значит ΔACB
равнобедренный AC=BC =OM/2, а в равнобедренном треугольнике медиана, проведенная к основанию ,является (биссектрисой) и высотой т.е. медиана CD ⊥AВ .


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili