
Вопрос задан 04.02.2020 в 17:54.
Предмет Геометрия.
Спрашивает Щербина Игорь.
Отрезок BD-высота треугольника ABC. От вершины B на прямой CB по обе стороны от точки B отложены
отрезки BE и BK, равные AB. На AC от точки D отложен отрезок DF, равный DA. Докажите, что точки A, E, K и F лежат на одной окружности.

Ответы на вопрос

Отвечает Мулюкин Алексей.
По условию АВ=ВЕ=ВК
Соединим точки В и F
В треугольнике АВF :
AD=DF, значит, высота ВD - медиана, она делит основание АF пополам, поэтому
треугольник АВF - равнобедренный.
Тогда АВ=ВF
AB=BF=BE=BK
Точки А, Е, К, F равноудалены от точки В.
Тогда точка В - центр описанной окружности,
а точки А, Е, К, F лежат на окружности с центром в точке В.


Топ вопросов за вчера в категории Геометрия

Геометрия 61

Геометрия 108

Геометрия 17

Геометрия 10

Геометрия 34

Геометрия 75

Геометрия 12

Геометрия 13
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili