
Вопрос задан 23.01.2020 в 14:53.
Предмет Геометрия.
Спрашивает Абраменков Александр.
В прямоугольном треугольнике с вершины прямоrо угла проведения высоту, биссектрису и медиану.
Найдите острые углы треугольника, если:кут межу высотой и медианой=10градусов

Ответы на вопрос

Отвечает Тимошенко Аліна.
Пусть большой ∆ - это АВС, медиана - это отрезок АМ, высота - отрезок АV, биссектриса при моём решении не потребуется. По определению высоты в ∆ АVМ угол AVM равен 90°, при этом мы знаем, что угол между высотой и биссектрисой (это угол МAV) равен 10°. Тогда получаем, что угол АМV равен 90°-10°=80° (по теореме о сумме углов ∆). Значит, угол ВМА равен 100° как смежный с углом АМV. Из того, что в прямоугольном ∆ медиана, проведённая к гипотенузе, равна половине гипотенузы, делаем вывод, что ∆ ВМА равнобедренный (по определению). Соответственно, угол МВА равен углу МАВ и равен (180°-100°):2= 40°. Угол МВА - это угол АВС в большом прямоугольном ∆. Тогда угол ВАС равен 90°- 40°=60°. Ответ: углы ∆ равны 40° и 60°.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili