Вопрос задан 21.01.2020 в 12:20. Предмет Геометрия. Спрашивает Соколова Лилия.

ПОМОГИТЕ! Докажите теорему о том, что если две параллельные прямые пересечены секущей, то

соответственные углы равны
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Беркут Ника.
1. Если две параллельные прямые пересечены секущей, накрест лежащие углы равны.

2. Если две параллельные прямые пересечены секущей, то соответственные углы равны.

3. Если две параллельные прямые пересечены секущей,то сумма односторонних углов равна 180°

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Theorem: If two parallel lines are intersected by a transversal, then the corresponding angles are equal.

To prove this theorem, we can use the properties of parallel lines and transversals. Let's consider two parallel lines, line AB and line CD, intersected by a transversal line EF. We want to show that the corresponding angles, denoted as angle 1 and angle 2, are equal.

Proof:

1. Given: Line AB || Line CD, and Line EF is a transversal intersecting AB and CD. 2. We want to prove: Angle 1 = Angle 2.

To prove this, we will use the following steps:

Step 1: Draw a diagram to visualize the given information.

``` A----------------B | | | | | | E----------------F | | | | | | C----------------D ```

Step 2: Since line AB is parallel to line CD, we know that angle AEF and angle BFE are alternate interior angles. Similarly, angle CEF and angle DFE are also alternate interior angles.

Step 3: By the alternate interior angles theorem, we know that alternate interior angles formed by a transversal and two parallel lines are congruent. Therefore, we can conclude that angle AEF = angle BFE and angle CEF = angle DFE.

Step 4: Since angle AEF and angle CEF are corresponding angles, and angle BFE and angle DFE are also corresponding angles, we can conclude that angle AEF = angle CEF and angle BFE = angle DFE.

Step 5: By the transitive property of equality, we can combine the above two statements to get angle AEF = angle CEF = angle BFE = angle DFE.

Step 6: Since angle AEF and angle BFE are corresponding angles, we can conclude that angle 1 = angle AEF = angle CEF.

Step 7: Similarly, since angle CEF and angle DFE are corresponding angles, we can conclude that angle 2 = angle CEF = angle DFE.

Step 8: Combining the above two statements, we can conclude that angle 1 = angle 2.

Therefore, we have proved that if two parallel lines are intersected by a transversal, then the corresponding angles are equal.

Please note that the proof provided above is a general proof for the theorem and does not specifically reference the sources provided.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос