Вопрос задан 19.01.2020 в 08:52. Предмет Геометрия. Спрашивает Костырин Андрей.

В треугольник ABC вписан круг . Паралельно стороне AC проведен отрезок MN на котором расположен

центр круга . AC= 5 MN=3 .Нужно найти периметр четырехугольника ABMN
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Якуба Захар.

Решение на рисунке.


**********************

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи можно воспользоваться свойством вписанного четырехугольника.

Периметр четырехугольника ABMN можно найти, сложив длины всех его сторон.

Первая сторона, AB, является стороной треугольника ABC. Ее длина равна AC = 5 (по условию задачи).

Вторая сторона, BN, параллельна стороне AC и проходит через центр круга. Учитывая, что MN также параллельна стороне AC, сторона BN равна MN = 3.

Третья сторона, NA, является радиусом вписанного круга и проходит через центр круга. Радиус вписанного круга всегда перпендикулярен стороне в которую он вписан. Поэтому, радиус NA является высотой треугольника ABC, опущенной из вершины A и проходит через центр круга. Так как треугольник ABC является прямоугольным, то сторона NA равна половине гипотенузы треугольника ABC. Зная длину стороны AC, мы можем вычислить сторону NA:

NA = AC/2 = 5/2 = 2.5

Четвертая сторона, AM, является радиусом вписанного круга и может быть найдена с помощью теоремы Пифагора:

AM = √(AB^2 - BM^2) = √(5^2 - 3^2) = √(25 - 9) = √16 = 4

Теперь у нас есть длины всех сторон четырехугольника ABMN:

AB = 5, BN = 3, NA = 2.5, AM = 4.

Периметр четырехугольника ABMN равен сумме длин всех его сторон:

Периметр ABMN = AB + BN + NA + AM = 5 + 3 + 2.5 + 4 = 14.5

Таким образом, периметр четырехугольника ABMN равен 14.5.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос