
Докажи, что сумма внешних углов четырёхугольника, взятых по одному при каждой вершине , равна
360(градусов) ПОМОГИ ПОЖАЛУЙСТА))

Ответы на вопрос




Я рад помочь вам с вашим вопросом.
Сумма внешних углов четырёхугольника, взятых по одному при каждой вершине, равна 360°. Для доказательства этого факта можно использовать следующую логику:
- Проведём диагональ AC в четырёхугольнике ABCD. Тогда четырёхугольник разобьётся на два треугольника: ABC и ACD. - Согласно теореме о сумме углов треугольника, сумма углов каждого треугольника равна 180°. - Тогда сумма углов четырёхугольника ABCD равна сумме углов этих треугольников: ∠A + ∠B + ∠C + ∠D = ∠BAC + ∠ABC + ∠BCA + ∠ACD + ∠CDA + ∠DAC = 180° + 180° = 360°. - Если мы рассмотрим внешние углы четырёхугольника, то заметим, что каждый внешний угол вместе со смежным внутренним составляет 180° (например, углы при вершине A). Таких пар углов будет четыре, поэтому сумма всех внутренних углов и внешних (взятых по одному при каждой вершине) составляет 360° + 360° = 720°. - Отсюда следует, что сумма внешних углов четырёхугольника, взятых по одному при каждой вершине, равна 720° - 360° = 360°.
Надеюсь, это ответило на ваш вопрос. Если вам нужна ещё какая-то помощь, пожалуйста, обращайтесь.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili