
Конус получается при вращении прямоугольного треугольника с катетами 6 и 8 вокруг большого
катета.Найти объем и площадь поверхности

Ответы на вопрос

V=1/3*пи*36*8=96 пи
Площадь боковой поверхности: равна <пиrl>. Найдем образующую (она является гипотенузой в прямоугольном треугольнике) l=√(36+64)=10
S=пи*6*10=60пи
площедь полной поверхности(если нужна): пиrl+пиr^2=60пи+36пи=96пи



Finding the Volume and Surface Area of a Cone
To find the volume and surface area of a cone, we need to know the dimensions of the cone. In this case, the cone is formed by rotating a right-angled triangle with legs measuring 6 and 8 units around the longer leg.
Let's calculate the volume and surface area of the cone step by step.
Calculating the Volume of the Cone
The volume of a cone can be calculated using the formula:
Volume = (1/3) * π * r^2 * h
Where: - π is a mathematical constant approximately equal to 3.14159 - r is the radius of the base of the cone - h is the height of the cone
In this case, the base of the cone is a circle with a radius equal to half the length of the longer leg of the right-angled triangle, which is 8 units. The height of the cone is equal to the length of the shorter leg of the right-angled triangle, which is 6 units.
Let's substitute the values into the formula to calculate the volume:
Volume = (1/3) * π * (8/2)^2 * 6
Simplifying the equation:
Volume = (1/3) * π * 4^2 * 6
Volume = (1/3) * π * 16 * 6
Volume = (1/3) * π * 96
Using the approximate value of π as 3.14159:
Volume ≈ (1/3) * 3.14159 * 96
Volume ≈ 100.5309648
Therefore, the volume of the cone is approximately 100.53 cubic units.
Calculating the Surface Area of the Cone
The surface area of a cone can be calculated using the formula:
Surface Area = π * r * (r + l)
Where: - π is a mathematical constant approximately equal to 3.14159 - r is the radius of the base of the cone - l is the slant height of the cone
To calculate the slant height, we can use the Pythagorean theorem:
l = √(r^2 + h^2)
In this case, the radius of the base of the cone is 8/2 = 4 units, and the height of the cone is 6 units. Let's calculate the slant height:
l = √(4^2 + 6^2)
l = √(16 + 36)
l = √52
Using the approximate value of √52 as 7.2111:
l ≈ 7.2111
Now, let's substitute the values into the surface area formula:
Surface Area = π * 4 * (4 + 7.2111)
Surface Area = π * 4 * 11.2111
Using the approximate value of π as 3.14159:
Surface Area ≈ 3.14159 * 4 * 11.2111
Surface Area ≈ 141.3716696
Therefore, the surface area of the cone is approximately 141.37 square units.
To summarize: - The volume of the cone is approximately 100.53 cubic units. - The surface area of the cone is approximately 141.37 square units.
Please note that these calculations are approximate due to the use of an approximate value for π.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili