
Вопрос задан 15.07.2019 в 13:18.
Предмет Геометрия.
Спрашивает Ястребцев Стас.
Помогите решить 3 и 4. Заранее БЛАГОДАРНА!! если можно, то рисунки не помешало бы..( с объяснениями)



Ответы на вопрос

Отвечает Зинолла Рустем.
3. 1 вариант
Дано:
ABCD - прямоугольник
S равноудалена от A, B, C, D (SA = SB = SC = SD)
AB = 6 см
AD = 8 см
AS = 13 см
Найти: расстояние от S до (ABC) или SO
Решение:
S равноудалена от всех вершин прямоугольника ⇒ перпендикуляр SO (он же расстояние до плоскости ABC) попадёт в центр прямоугольника, или, иными словами, точка O - центр ABCD.
Центр ABCD - это пересечение диагоналей.
Точкой O диагонали делятся на равные части, свойство прямоугольника.
BO = OD = AO = OC
Найдём AC по теореме Пифагора:
AC = √(36+64) = √100 = 10 см
AO = AC/2 = 5 см
Как уже было сказано, SO ⊥ (ABC) ⇒ ΔASO - прямоугольный.
Найдём SO по теореме Пифагора:
SO = √(169-25) = √144 = 12 см
ОТВЕТ: 12 см.
3. 2 вариант
Дано:
ABCD - прямоугольник
S равноудалена от A, B, C, D (SA = SB = SC = SD)
AB = 12 см
BC = 16 см
Расстояние от S до (ABC) или SO = 24 см
Найти: SA
Решение:
Аналогично с первой задачей S равноудалена от всех вершин прямоугольника ⇒ перпендикуляр SO попадёт в центр прямоугольника.
Найдём диагональ AC по теореме Пифагора:
AC = √(144+256) = √400 = 20 см
AO = AC/2 = 10 см
ΔASO - прямоугольный ⇒ По теореме Пифагора находим AS:
AS = √(576+100) = √676 = 26 см
Ответ: 26 см
4. 1 вариант
Дано:
DA ⊥ (ABC)
∠ADC = ∠ADB
Доказать, что ∠DCB = ∠DBC
Доказательство:
DA⊥(ABC) ⇒ DA⊥AB и DA⊥AC ⇒ ΔDAB и ΔDAC - прямоугольные ⇒ ∠DAB = ∠DAC = 90°
Рассмотрим ΔDAB и ΔDAC
1. DA - общая
2. ∠ADB = ∠ADC - по условию
3. ∠DAC = ∠DAB - из решения
Отсюда следует, что ΔDAB = ΔDAC (2 признак) ⇒ DC = DB
DC = DB ⇒ ΔDBC - равнобедренный ⇒ ∠DCB = ∠CBD.
Что и требовалось доказать.
4. 2 вариант
Дано:
DA ⊥ (ABC)
∠DBA = ∠DCA
Доказать, что ∠DBC = ∠DCB
Доказательство:
DA⊥(ABC) ⇒ DA⊥AB, DA⊥AC ⇒ ΔDAB и ΔDAC - прямоугольные ⇒ ∠DAB = ∠DAC = 90°
∠ADB = 90° - ∠DBA
∠ADC = 90° - ∠DCA
Так как ∠DBA и ∠DAC равны, справедливо утверждать, что ∠ADB = 90° - ∠DCA, а следовательно ∠ADC = ∠ADB
Рассмотрим ΔDAB и ΔDAC:
1. DA - общая
2. ∠ADC = ∠ADB - из решения
3. ∠DAB = ∠DAC - из решения
Отсюда следует, что ΔDAB = ΔDAC по второму признаку.
Из равенства следует, что DB = DC как соответствующие элементы равных треугольников.
DB = DC ⇒ ΔDBC - равнобедренный ⇒ ∠DBC = ∠DCB
Что и требовалось доказать.
Дано:
ABCD - прямоугольник
S равноудалена от A, B, C, D (SA = SB = SC = SD)
AB = 6 см
AD = 8 см
AS = 13 см
Найти: расстояние от S до (ABC) или SO
Решение:
S равноудалена от всех вершин прямоугольника ⇒ перпендикуляр SO (он же расстояние до плоскости ABC) попадёт в центр прямоугольника, или, иными словами, точка O - центр ABCD.
Центр ABCD - это пересечение диагоналей.
Точкой O диагонали делятся на равные части, свойство прямоугольника.
BO = OD = AO = OC
Найдём AC по теореме Пифагора:
AC = √(36+64) = √100 = 10 см
AO = AC/2 = 5 см
Как уже было сказано, SO ⊥ (ABC) ⇒ ΔASO - прямоугольный.
Найдём SO по теореме Пифагора:
SO = √(169-25) = √144 = 12 см
ОТВЕТ: 12 см.
3. 2 вариант
Дано:
ABCD - прямоугольник
S равноудалена от A, B, C, D (SA = SB = SC = SD)
AB = 12 см
BC = 16 см
Расстояние от S до (ABC) или SO = 24 см
Найти: SA
Решение:
Аналогично с первой задачей S равноудалена от всех вершин прямоугольника ⇒ перпендикуляр SO попадёт в центр прямоугольника.
Найдём диагональ AC по теореме Пифагора:
AC = √(144+256) = √400 = 20 см
AO = AC/2 = 10 см
ΔASO - прямоугольный ⇒ По теореме Пифагора находим AS:
AS = √(576+100) = √676 = 26 см
Ответ: 26 см
4. 1 вариант
Дано:
DA ⊥ (ABC)
∠ADC = ∠ADB
Доказать, что ∠DCB = ∠DBC
Доказательство:
DA⊥(ABC) ⇒ DA⊥AB и DA⊥AC ⇒ ΔDAB и ΔDAC - прямоугольные ⇒ ∠DAB = ∠DAC = 90°
Рассмотрим ΔDAB и ΔDAC
1. DA - общая
2. ∠ADB = ∠ADC - по условию
3. ∠DAC = ∠DAB - из решения
Отсюда следует, что ΔDAB = ΔDAC (2 признак) ⇒ DC = DB
DC = DB ⇒ ΔDBC - равнобедренный ⇒ ∠DCB = ∠CBD.
Что и требовалось доказать.
4. 2 вариант
Дано:
DA ⊥ (ABC)
∠DBA = ∠DCA
Доказать, что ∠DBC = ∠DCB
Доказательство:
DA⊥(ABC) ⇒ DA⊥AB, DA⊥AC ⇒ ΔDAB и ΔDAC - прямоугольные ⇒ ∠DAB = ∠DAC = 90°
∠ADB = 90° - ∠DBA
∠ADC = 90° - ∠DCA
Так как ∠DBA и ∠DAC равны, справедливо утверждать, что ∠ADB = 90° - ∠DCA, а следовательно ∠ADC = ∠ADB
Рассмотрим ΔDAB и ΔDAC:
1. DA - общая
2. ∠ADC = ∠ADB - из решения
3. ∠DAB = ∠DAC - из решения
Отсюда следует, что ΔDAB = ΔDAC по второму признаку.
Из равенства следует, что DB = DC как соответствующие элементы равных треугольников.
DB = DC ⇒ ΔDBC - равнобедренный ⇒ ∠DBC = ∠DCB
Что и требовалось доказать.



Отвечает Богомолов Ярослав.
Решение на фотографии


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili