Вопрос задан 10.07.2019 в 06:38. Предмет Геометрия. Спрашивает Барашкин Артём.

В треугольнике abc известно что ab=bc, ac = 8 см, AD - медиана, BE - высота, BE = 12 см, Из точки D

опущено перпендикуляр DF на сторону AC. Найдите отрезок DF и угол ADF.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Цоктоева Сурана.
В треугольнике abc известно что ab=bc, ac = 8 см, AD - медиана, BE - высота, BE = 12 см, Из точки D опущено перпендикуляр DF на сторону AC. Найдите отрезок DF и угол ADF.
ВЕ - высота равнобедренного треугольника, значит ВЕ - медиана этого треугольника.АЕ=ЕС. DF - перпендикуляр к АD, то есть DF параллельна ВЕ и является средней линией треугольника ВЕС, так как точка D - середина стороны ВС (АD- медиана - дано). Тогда
DF=(1/2)*BE=6 см. ЕF=(1/2)*ЕС или EF=8:2=4см.
AF=АЕ+ЕF или АF=4+2=6. Тангенс угла ADF - это отношение противолежащего катета к прилежащему, то есть td(ADF)=AF/DF=1. <ADF=45°.
Ответ: отрезок DF=6см, <ADF=45°.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос