
Вопрос задан 26.05.2018 в 12:55.
Предмет Геометрия.
Спрашивает Бабич Сабина.
Треугольник ABCD вписан в окружность. Известно, что ∠CAD=52°, ∠BCD=63°. Найдите ∠CDB. Ответ дайте в
градусах.

Ответы на вопрос

Отвечает Резникова Анна.
Только не треугольник, а ЧЕТЫРЕХУГОЛЬНИК.
<CAD - вписанный и опирается на дугу CD. Значит дуга CD=104° (так как вписанный угол равен половине градусной меры дуги, на которую он опирается)
<BCD - вписанный и опирается на дугу DAB. Значит дуга DAB=126°
Дуга ВС равна 360°-104°-126°=130° (так как окружность равна 360° и состоит из суммы дуг ВС+CD+DAB).
На эту дугу опирается вписанный угол CDB. Следовательно, он равен 65°.
Ответ: <CDB=65°


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili