Вопрос задан 26.05.2018 в 09:59. Предмет Геометрия. Спрашивает Саенко Екатерина.

на касательной к окружности от точки касания Pпо обе стороны от неё отложены два отрезка РА и

РВ,Точки А и В соеденены отрезками с центром окружности О,ОА пересекает окружность в точкеС ,а ВО- В ТОЧКЕ D найдите CD если радиус окружности равен 7,а ОА =ОВ=25
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Балабанов Дима.

Треугольник АВО равнобедренный (ОА=ОВ), тогда ОР - высота, медиана и биссектриса. Треугольник РСД тоже равнобедренный (ОС=ОД=радиус). Пусть т.М - пересечение СД и ОР. Т.к. угол АОВ для этих 2-х треугольников общий, то углы при основаниях тоже равны (РВО=МДО), а значит треугольники ОМД и ОРВ подобные. Тогда ОМ/ОР=ОД/ОВ. Отсюда ОМ=ОР*ОД/ОВ=7*7/25=49/25

МД^2=ОД^2-ОМ^2=49-2401/625

СД = 2МД = 2 * корень (49-2401/625) = 13,44

 

 

 

 

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос