
Вопрос задан 26.05.2018 в 09:59.
Предмет Геометрия.
Спрашивает Саенко Екатерина.
на касательной к окружности от точки касания Pпо обе стороны от неё отложены два отрезка РА и
РВ,Точки А и В соеденены отрезками с центром окружности О,ОА пересекает окружность в точкеС ,а ВО- В ТОЧКЕ D найдите CD если радиус окружности равен 7,а ОА =ОВ=25

Ответы на вопрос

Отвечает Балабанов Дима.
Треугольник АВО равнобедренный (ОА=ОВ), тогда ОР - высота, медиана и биссектриса. Треугольник РСД тоже равнобедренный (ОС=ОД=радиус). Пусть т.М - пересечение СД и ОР. Т.к. угол АОВ для этих 2-х треугольников общий, то углы при основаниях тоже равны (РВО=МДО), а значит треугольники ОМД и ОРВ подобные. Тогда ОМ/ОР=ОД/ОВ. Отсюда ОМ=ОР*ОД/ОВ=7*7/25=49/25
МД^2=ОД^2-ОМ^2=49-2401/625
СД = 2МД = 2 * корень (49-2401/625) = 13,44


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili