
Вопрос задан 22.06.2019 в 19:04.
Предмет Геометрия.
Спрашивает Захарова Даша.
Через середину k медианы bm треугольника abc и вершину a проведена прямая, пересекающая сторону bc
в точке p. Найдите отношение площади четырёхугольника kpcm к площади треугольника amk

Ответы на вопрос

Отвечает Клишина Настя.
Т.к. ВМ - медиана треугольника АВС, то S(ABM)=S(MBC)
Т.к. АК - медиана треугольника АВМ,
* тоS(ABK)=S(AKM)=S(ABM)/2=S(MBC)/2
Проведем МД так, что МД || КР, тогда КР - средняя линия в треуг-ке ВДМ, а МД - средняя линия в треуг-ке АРС, значит ВР=РД=ДС, т.е. ВС=3ВР. По условию ВК=КМ, т.е. ВМ=2ВК. Тогда
S(KBP)=1/2*ВК*ВР*sinКВР
S(МВС)=1/2*ВМ*ВС*sinКВР=1/2*2ВК*3ВР*sinКВР=3*ВК*ВР*sinКВР
Тогда S(KBP)/S(МВС) = 1/ 6, а значит
* S(KPСМ)/S(МВС) = 5/6.
Сравниваем строчки, помеченные * и получаемS(KPСМ) : S(AМK) = 12:5


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili