
Через вершину A прямоугольника ABCD проведена наклонная PA, которая образует со сторонами AB и AD
углы 45 и 60. Найдите угол между этой наклонной и плоскостью прямоугольника.


Ответы на вопрос

Е - проекция точки Р на плоскость. Опустим из ней перпендикуляры на АВ и AD, обозначим В(:))) можно считать, что Е лежит на ВС, мы просто так выбрали длину АР) и F (можно было бы обозвать её D, а Е переобозначить за С - это совершенно не важно, но на рисунке уже обозначена точка С и D, и это внесет путаницу)
Тут важно понять вот что - РЕ перпендикулярно ВЕ и ЕF, АВЕF - прямоугольник,
АВ перпендикулярно плоскости ВЕР (в этой плоскости есть 2 прямые, перпендикулярные АВ, это РЕ и ЕВ) поэтому АВ перпендикулярно ВР. Точно так же доказывается (это стандартный метод), что AF перпендикулярно PF (попробуйте сами объяснить). Обозначим а = АВ, b = AF, L = AP, c = AE; угол РАЕ = Ф;
Тогда
a = L*cos(45) = a/корень(2);
b = L*cos(60) = a/2;
c = корень(a^2 + b^2) = L*корень(1/2 + 1/4) = L*корень(3)/2;
cos(Ф) = c/L = корень(3)/2; sin(Ф) = корень(1 - 3/4) = 1/2;
Ф = 30 градусов.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili