Вопрос задан 18.06.2019 в 17:38. Предмет Геометрия. Спрашивает Шинкарёва Анна.

Докажите что четырехугольник PSQT,заданный координатами своих вершин

P(3;0),S(-1;3),Q(-4;-1),T(0;4),является квадратом и вычислите его площадь.Помогите!!!
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Фефелов Лёша.
Координаты вектора равны разности соответствующих координат точек его конца и начала ab{х2-х1;y2-y1}.
Модуль или длина вектора: |a|=√(x²+y²). У нас
|PS|=√[(-1-3)²+(3-0)²]=√25=5.
|SQ|=√[(-4+1)²+(-1-3)²]=√25=5.
|PT|=√[(0-3)²+(4-0)²]=√25=5.
Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю.
Скалярное произведение: (a,b)=x1*x2+y1*y2.
У нас (PS*SQ)=(-4)*(-3)+3*(-4)=0, то есть вектора PS и SQ перпендикулярны.
(PS*PT)=(-4)*(-3)+3*4=24, то есть вектора PS и SQ  НЕ ПЕРПЕНДИКУЛЯРНЫ.
Видимо, в условии ошибка. Точка Т должна иметь координаты Т(0;-4).
И тогда вектор |PT|= √[(0-3)²+(-4-0)²]=√25=5.
(PS*PT)=(-4)*(-3)+3*(-4)=0, то есть вектора PS и PT перпендикулярны.
Этого достаточно, чтобы сказать, что четырехугольник PSQT - квадрат.
Но для проверки координат точки Т(0;-4) найдем модуль вектора
|QT|=√[(0+4)²+(-4+1)²]=√25=5.
(SQ*QT)=(-3)*(4)+(-4)*(-3)=0, то есть вектора PS и PT перпендикулярны.
Ответ: четырехугольник PSQT квадрат, при условии, что вершины имеют координаты: P(3;0), S(-1;3), Q(-4;-1), Т(0;-4).
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос