
Вопрос задан 18.06.2019 в 15:12.
Предмет Геометрия.
Спрашивает Дубровина Даша.
Решите с объяснением, подробно. Хотя бы одну.



Ответы на вопрос

Отвечает Непомнящая Виктория.
По определению тангенса tgx = sinx / cosx
основное тригонометрическое тождество: (sinx)^2 + (cosx)^2 = 1
((( это тождество позволяет по известному синусу найти косинус... и наоборот...)))
-------------------------------- это необходимая ((и достаточная)) теория...
(sinx)^2 = 1 - (cosx)^2
tgx = 3/4 = sinx / cosx
3*cosx = 4*sinx
подставим в тождество...
(sinx)^2 = 1 - (4*sinx / 3)^2
(sinx)^2 = 1 - 16*(sinx)^2 / 9
(sinx)^2 + 16*(sinx)^2 / 9 = 1
25*(sinx)^2 / 9 = 1
(sinx)^2 = 9/25
sinx = +- 3/5
------------------т.к. дано: 0 < tgx = 3/4 < 1 => 0 < x < pi/4 (период тангенса pi)))
следовательно для этих значений (х) и sinx > 0 и cos(x) > 0
sinx = 3/5
cosx = 4*sinx / 3 = 4/5
основное тригонометрическое тождество: (sinx)^2 + (cosx)^2 = 1
((( это тождество позволяет по известному синусу найти косинус... и наоборот...)))
-------------------------------- это необходимая ((и достаточная)) теория...
(sinx)^2 = 1 - (cosx)^2
tgx = 3/4 = sinx / cosx
3*cosx = 4*sinx
подставим в тождество...
(sinx)^2 = 1 - (4*sinx / 3)^2
(sinx)^2 = 1 - 16*(sinx)^2 / 9
(sinx)^2 + 16*(sinx)^2 / 9 = 1
25*(sinx)^2 / 9 = 1
(sinx)^2 = 9/25
sinx = +- 3/5
------------------т.к. дано: 0 < tgx = 3/4 < 1 => 0 < x < pi/4 (период тангенса pi)))
следовательно для этих значений (х) и sinx > 0 и cos(x) > 0
sinx = 3/5
cosx = 4*sinx / 3 = 4/5


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili