Вопрос задан 17.06.2019 в 21:27. Предмет Геометрия. Спрашивает Гурьева Лиза.

В прямоугольном треугольнике гипотенуза равна 20см, а угол между бисектрисой и медианой, которые

проведены из вершины прямого угла равен 15 градусам. Найти катеты треугольника.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Иванова Настя.

Пусть это будет тр-к АВС с прямым углом С. АВ = 20см. Биссетриса СЕ, и медиана СД.

Угол ВСЕ = 45гр., т.к. СЕ - биссектриса. По условию угол ДСЕ = 15гр., тогда угол ВСД = 60гр.

Медиана СД, проведённая из вершины прямого угла С равна половине гипотенузы, т.е. СД = ВД и тр-к ВСД - равнобедренный, углы при основании ВС равны.

угол СВД = угол ВСД = 60гр. Тогда ВС = СД =ВД = 0,5АВ = 0,5·20 = 10(см)

По теореме Пифагора: АС = √(АВ² - ВС²) = √(20² - 10²) = √(400 - 100) = √300 = 10√3(см)

Ответ: катеты тр-ка равны 10см и 10√3см

 

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос